ISMAIL KHALFAOUI HASSANI

Doctoral Student in Artificial Intelligence

@	ismail.khalfaoui-hassani@univ-tlse3.fr
e	

Google Scholar: Ismail Khalfaoui Hassani

Personal website: https://ismakh.com

EDUCATION

2020 – Now Toulouse, France **Ph.D. Student in Computer Science.** (thesis defense scheduled for March 2024). **ANITI / CNRS-CerCo / IRIT** I am a Ph.D. student in computer science at the UNIVERSITÉ FÉDÉRALE TOULOUSE MIDI-PYRÉNÉES. Currently in my final year, my Ph.D. is supported by the ARTIFICIAL AND NATURAL INTELLIGENCE TOULOUSE INSTITUTE (ANITI). I am advised by <u>Timothée Masquelier</u> and <u>Thomas Pellegrini</u>, and I am part of the CNRS-CERCO lab.

My research interests are:

Artificial Intelligence.

memory parallel computers.

C++ / MPI Boost / Cmake / Slurm

- Deep Learning.
- Differentiable optimization.

- Computer Vision.
- Audio and speech recognition.
 Spilling Neural Networks
- Spiking Neural Networks.

2019 – 2020 Master's Degree

INPT-ENSEEIHT / Paul Sabatier Faculty

INPT-ENSEEIHT

Holder of the international master's degree titled: Performance in Software, Media and Scientific Computing (PSMSC). The full master's syllabus is available at (psmsc).

2017 – 2020 Engineering Degree Toulouse, France Obtained from ENSE

Obtained from ENSEEIHT engineering school, option: HPC & Big Data, in the department of Digital Sciences. For more information please see: (syllabus-enseeiht).

EXPERIENCE

Toulouse, France

2020 Toulouse, France 5 months	Research and Development InternshipINRAIModeling of biological spiking neural networks that encode the pitch of sounds using synchrony fields as well as the process of STDP (spike-timing-dependent plasticity) using an approach bas discrete event system specification known as DEVS (github.com/vle-forge/irritator). C++ / Cmake / DEVS / Biological Neurons	
2019	Research and Development Internship CERFACS - ALGO t	eam.
Toulouse, France	Adaptation of the existent row version of the hybrid scheme implemented in the ABCD Solver to the colu	1mn
3 months	version, for solving large sparse unsymmetrical or overdetermined systems of equations on distribu	1ted

SELECTED PUBLICATIONS

2023	Audio classification with Dilated Convolutions with Learnable Spacings Neurips 2023 workshop Machine Learning for Audio. Khalfaoui-Hassani, I., Masquelier, T., & Pellegrini, T. (2023). Audio classification with Dilated Convolution with Learnable Spacings. arXiv preprint arXiv:2309.13972. (github.com/K-H-Ismail/Dcls-Audio).
2023	Dilated Convolution with Learnable Spacings: beyond bilinear interpolation ICML 2023 workshop Differentiable Almost Everything. Khalfaoui-Hassani, I., Pellegrini, T., & Masquelier, T. Dilated convolution with learnable spacings: beyond bilinear interpolation. In ICML 2023 Workshop on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators, 2023. (https://openreview.net/forum?id=j8FPBCltB9).
2023	Adapting a ConvNeXt model to audio classification on AudioSetInterSpeech 2023.Pellegrini, T., Khalfaoui-Hassani, I., Labbé, E., & Masquelier. Adapting a ConvNeXt model to audio classificationon AudioSet. 24th INTERSPEECH Conference (INTERSPEECH 2023), Aug 2023, Dublin, Ireland.
2023	Dilated convolution with learnable spacings ICLR 2023. Khalfaoui-Hassani, I., Pellegrini, T., & Masquelier, T. Dilated convolution with learnable spacings. In the 11th International Conference on Learning Representations (ICLR 2023), May 2023, Kigali, Rwanda. (https://openreview.net/forum?id=Q3-1vRh3H0A). (github.com/K-H-Ismail/DCLS).
2019	The Column Block Cimmino Method CERAFCS - Technical report. Khalfaoui-Hassani, I., Leleux, P., & Ruiz, D. Internship report: The Column Block Cimmino Method. Cerafical report.

SUBMISSIONS AND WORKING PAPERS

2023

Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings

Dilated Convolutions with Learnable Spacings Submitted: arXiv preprint. Hammouamri, I., Khalfaoui-Hassani, I., & Masquelier, T. (2023). Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings. arXiv preprint arXiv:2306.17670.

TEACHING ASSISTANTSHIP

During my doctoral studies, I served as a **part-time lecturer** at the **University of Toulouse** III, Paul Sabatier, where I delivered lectures, led discussion sections, and graded assignments and exams for undergraduate and master's courses. Over two years, I taught for a total of **120 hours**. This experience allowed me to develop strong teaching and mentoring skills, as well as to gain valuable experience in the classroom setting.

2022 - 2023	Mathematics Linear algebra.	Level: first-year undergraduate (L1).
2022 - 2023	Optimization Convex analysis. Optimality conditions. Unconstrained optimization: (link to the syllabus).	Level: first year of master's degree (M1). descent algorithms, gradient method.
2021 - 2022	Mathematics Functions. Complex numbers. Polynomials.	Level: first-year undergraduate (L1).
2020 - 2023	Introduction to sound processing & speech recognition Lecture on sound processing & speech recognition in Al. (link to the	Level: Master's +. recorded lecture).

SOFTWARES AND PROGRAMMING LANGUAGES

Drawing upon my experience, I am confident in my good **Python** skills, as well as my strong proficiency in **Pytorch**, **git**, **UNIX** commands and **LaTeX**. I am also highly proficient in **C++** and **Slurm**, with an extensive experience working with **MATLAB**, **R**, **CUDA**, **Java** and **MPI**.

Additionally, I am fully proficient in **multi-GPU**, **multi-node** parallel computing. This is illustrated by my experience carrying out many production runs on the **Jean Zay** supercomputer.

My diverse programming skill set highlights my ability to work with a range of languages and tools, and I am confident in my technical expertise to make valuable contributions to programming projects.

LANGUAGES

English - Advanced. C1. (TOEIC 2019: 950/990)

French - Fully bilingual

Arabic - Native

REFERENCES

Prof. Timothée Masquelier, Expert in spiking neural networks, CNRS CERCO Toulouse. Timothee.MASQUELIER@cnrs.fr.

Prof. Daniel Ruiz,

Expert in numerical analysis. IRIT Toulouse. INP Toulouse. daniel.ruiz@enseeiht.fr.

Prof. Thomas Pellegrini,

Specialist in deep learning for audio applications, IRIT Toulouse. INP Toulouse. thomas.pellegrini@irit.fr.

Prof. Fabrice Gamboa,

Specialist in applied statistics and probability, Vice-President of International Relations at Paul Sabatier University. fabrice.gamboa@math.univ-toulouse.fr.